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Abstract. Sums of the form 

SJk, p ) = I ' m - " f ( k .  m)exp(-@mX 
RI 

over a d-dimensional lattice are analysed for small fl  and k = lk/. In particular, for 
non-integral o, S,(k, p )  is shown to have a singular part which behaves as 

S,(k,p)=k"-dX,(p/k)  asp-,O, k + O , p / k = O ( l ) ,  

and thus to exhibit cross-over phenomena. Explicit results for the cross-over function 
X,(z)  are obtained. 

1. Introduction 

Considerable attention has been devoted recently to the evaluation and analysis of 
lattice sums of the form 

S = 1 @ ( m )  
m 

where the sum is over all points m of a d-dimensional lattice. An explicit specification 
of the summand @(m), which depends on one or more parameters, will be said to 
define a class of lattice sums. 

Glas- 
ser (1973a,b, 1974) and Zucker (1974) have shown that for some lattices (1.1) can be 
evaluated in terms of elementary Dirichlet sums. Other work (see e.g. Hall 1976a, 
Chaba and Pathria 1975, 1976, Barber and Opie 1977) has investigated the asymp- 
totic properties of S as a function of an additional parameter z in @(m; z )  for large 
and/or small values of z .  Hall (1976b) has shown for two particular classes that this 
asymptotic behaviour can be rather analogous to that found in the theory of critical 
phenomena. In particular, he found that the leading asymptotic behaviour of S ( z )  was 
often independent of the lattice structure and exhibited a kind of universality. A 
similar universality was found for a different class by Barber and Opie (1977). 

For certain classes, notably the Madelung class generated by @ ( m )  = Im 

In this paper, we investigate lattice sums of the form 
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where the prime indicates the omission of the null vector. Here k is a d-dimensional 
vector of magnitude k,  p is a non-negative scalar and m = Im I. The restrictions on the 
parameter U and the detailed conditions imposed on the function f ( z )  will be dis- 
cussed later. Our attention will focus on the asymptotic behaviour of (1.2) in the limits 
k + 0 and p + 0. This behaviour is interesting because S,(k, p )  is an analytic function 
of k for fixed positive p but is non-analytic in k if p = 0. Consequently, the asymp- 
totic properties of S,(k, p )  for small k are different in the two regimes p > 0 and 
p = 0, with a ‘cross-over’ for small p. This behaviour is very analogous to that found 
in cross-over phenomena in the theory of phase transitions and multi-critical points 
(see e.g. Fisher 1974). 

To illustrate the basic phenomenon in which we are interested and to motivate our 
subsequent analysis, consider the one-dimensional sum 

For positive p this sum converges for all k, but for p = 0, it diverges if k = 0. For 
p > 0, and k small we can expand cos(km) to obtain 

~ 1 / 2 ( k ,  P )  = F ~ P ) -  t k 2 ~ - 3 / 2 ( p )  + 0(k4)  (1.4) 

where 
m 

F,(z) = m-O exp(-zm) 
m = l  

is the so called Bose function (ErdClyi 1953, London 1954). For / z J  < 27r and arglzl< 
T, these functions possess the convergent expansions (ErdClyi 1953) 

( 1 . 6 ~ )  

for non-integral U and 

~ ~ ( z ) = ( - z ) ’ - l ( ~ ~ S ) - ~ ( l ) - l n  z ) / ( s -I ) !+  ( - z ) “ g ( s - n ) / n ! ,  (1.6b) 
m 

n = O  
( n # S )  

for U equal to an integer s. In these formulae T(z) is the gamma function, l ( z )  is the 
Riemann zeta function and cc/(z) = d(ln T(z))/dz. 

Equation ( 1 . 6 ~ )  implies that for small p we can approximate (1.4) by 

(1.7) 3 2 -2 Si/z(k, P ) =  ( T / P ) ” ~ ( ~  -i& P + . 
Thus for p of the order k,  the correction term in (1.4) is of the order of the leading 
term, and (1.4) is a poor representation of SI&, p )  unless k is extremely small. 

On the other hand if = 0, we have 

S1/2(k, p)= Re f mP1l2 exp(-ikm) = Re Fl;z(ik) =: (7r/2k)’” + 0 ( 1 ) ,  (1 -8) 
m = l  

where we have used ( 1 . 6 ~ ) .  This result explicitly exhibits the non-analyticity of 
SI&, p )  as a function of k for p = 0. 

Whilst (1.8) is actually valid only if p EO, (1.7) shows that, for any small positive 
value of p, there exists a range of k for which Sl/2(k, p )  behaves essentially as in (1.8) 
and only ‘crosses-over’ to the true asymptotic behaviour of (1.4) for sufficiently small 
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k .  In the following section, we shall establish that in the limit k + 0, p + 0 with k / P  of 
order unity, S 1 p ( k ,  p )  has the representation 

Si/z(k P ) -  k - ' ' Z X i / z ( P I k ) ,  (1.9) 

xl&) = T1/2(i + z ' ) - ~ / ~  COS(+ cot-'(Z)). (1.10) 
with 

Two limits of X I l 2 ( z )  are now of special interest. In the limit z + 0, corresponding 
to p + 0 at fixed small k, we find 

X1/2(Z) = (d2>"z  + W), (1.11) 

which yields (1 A). On the other hand, as z + 00, which corresponds to k + 0 at fixed 
small p, we obtain 

x ~ / ~ ( z ) =  ~ ~ ' ~ z - ' / ~ ( i  - & Z - ~ + O ( Z - ~ ) ) ,  (1.12) 

from which we can recover (1.7). The cross-over function Xi&) thus affords a 
complete representation of the non-analytic behaviour of S1/2(k ,  p )  over the whole 
range of small values of both parameters k and 0. 

In the remainder of this paper, we explicitly calculate the cross-over functions 
associated with the more general sums (1.3). Section 2 is devoted to an analysis of 
(1.3) for d = 1;  the generalisation to arbitrary d is given in Q 3. A concluding 
discussion, in which we mention a few extensions and possible applications of these 
results, is given in 5 4. 

2. Analysis of one-dimensional sums 

We consider the sum 
oc 

S&, P )  = C m-"f(km) exp(-Bm), 
m = l  

'The function f(z) is assumed to satisfy both 

If(z )I M1< '33 for all z 
and 

(2.2a) 

(2.2b) 

These conditions ensure, by Chartier's test (see e.g. Whittaker and Watson 1965, 
p 72) that the Mellin transform 1," x"-'f(x)  dx exists at least for O <  Re s < 1. In 
addition, we shall assume that f(z) possesses a Taylor series 

(2.3) 

which converges for all 2. 

(2.l)'term by term to establish, 

a 
- -SAk,  P)=-sc- i (k,  P ) .  (2.4) a@ 

Since for p > 0, the sum in (2.1) converges uniformly in p, we can differentiate 
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Thus we can restrict U to the interval 

O < U S l .  (2.5) 

Sums corresponding to other values of U outside this interval can be generated by 
successive applications of the recurrence relation (2.4) together with 

lim S,(k, p )  = 0, for all U. 
P-LW 

Hence 

(2.7) 

and 
00 43 m 

B P I  1-1 

sU&, P ) =  / dP1/  dP2. . . JB dPiSU(k, P I )  (2.8) 

where 1 = 1,2 ,  . . . and U satisfies (2.5). 

a convergent Taylor series 
The condition (2.3) implies that S,(k, p )  is an analytic function of k for p > 0 with 

where F,(p)  is the Bose function defined by (1.5). However for sufficiently large 1 the 
coefficients of this series (by (1.6)) become very large and ultimately diverge as p + 0. 

If p = 0, S,(k, 0) converges by the integral test and (2.2) if k > 0 but diverges for 
k = 0. We shall show? explicitly that 

S,(k, 0) = k'-'A, + O(k"-') as k + 0. (2.10) 

To establish this result and to determine the associated cross-over function we 
introduce the Mellin transform 

m 

M ( p ;  p, k) = 5 x' - ' f (kx)  exp(-px) dx. (2.11) 
0 

An obvious change of variable yields 

M ( p ;  p, k ) = k - ' M ( p ;  2, l )=kkPW(p;  z )  (2.12) 

where 

z = P / k .  (2.13) 

Since f ( y )  satisfies (2.2), W ( p ;  z) is an analytic function of p for all z 2 0  in the 
strip 

1 > Re p > 0. 

Thus we can invert (2.11) to obtain 
(2.14) 

1 c+im 

f(km)exp(-pm)=- I m-'k-'W(p; z )dp ;  (2.15) 2 ~ i  c-im 

t This result is true for 0 <U < 1. The corresponding behaviour for v = 1 will be given later (see (2.25)). 
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where the contour is such that c = R e p  satisfies (2.14). If the contour is further 
restricted to the strip 

1 > R e p  > 1 -u 20, (2.16) 

we can substitute (2.15) in (2.1) and interchange the order of summation and in- 
tegration to yield the integral representation 

, .c+im 

(2.17) 

where, as before, c ( z )  is the Riemann zeta function and c = Re p satisfies (2.16). 
Since W(p; z )  is analytic in the strip (2.16) the leading behaviour of S& P )  as 

k + O  with z = P / k  = 0(1 )  comes from the pole of the zeta function in (2.17) at 
p = 1 - u. For 1 > u > 0, we thus obtain 

S d k ,  P ) -  k"-'XAP/k) (2.18) 

with 
r m  

X , ( z )  = W(1 -U; z )  = J x-" f (x )  exp(-zx) dx. (2.19) 
0 

For z = 0, i.e. p = 0, these results confirm (2.10) with 

A,=X,(O)= W(1-a;O). (2.20) 

To estimate the order of the correction term in (2.18) and to include the case 
U = 1,  we require some knowledge of the analytic properties of W ( p ;  z )  for Re p S 0. 
A suitable analytic continuation follows by writing 

00 

W(p; Z)'] YP-l(f(Y)-f(0))e-*y dY +f(0)z -Pr(P) .  (2.21) 
0 

Since f(y) satisfies (2.3), the integral in this expression converges for Re p > -1, while 
the second term shows that W(p; z )  has a simple pole at p = 0 with residue f(0) = ao. 
Thus the correction term in (2.18) and (2.10) is 0 (1 )  for small k.  

The case U = 1 is complicated by the fact that the integrand of (2.17) has a double 
pole at p = 0 arising from the coincidence of the poles of W ( p ;  z )  and c ( p  + 1). From 
(2.21) we find that 

(2.22) 
where 

$(I) = r y i y q i )  = -cE = -0.577216 . . . (2.23) 

with CE denoting Euler's constant. The corresponding expansion of c(1 + p )  is (see 
Whittaker and Watson 1965, p 271) 

1 

P 
l( 1 + p )  = - + C E  + O(p) .  (2.24) 

Combining (2.23) and (2.24) yields, after some elementary analysis, 

Sl(k, P ) =  -ao In k + X l ( P / k ) + O ( k )  as k + O , P / k = O ( l ) ,  (2.25) 
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where 

Xl(z)= -a0 In z + y-l(f(y)-ao)e-'Y dy. (2.26) 

The correction term in (2.25) comes from the pole in W ( p ,  z )  at p = -1. 
Equations (2.18), (2.19), (2.25) and (2.26) are the main results of this section and 

establish the asymptotic properties of (2.1) for 0 < U S  1 and all (small) values of p and 
k. The results reported in § 1 follow by specialising (2.18) and (2.19). For f(x) = cos x, 
(2.19) gives 

00 

X&) = I x-" cos x exp(-zx) dx, 
0 

(2.27) 

which may be evaluated by reference to ErdClyi (1954). Explicitly we find 

cos[(l - U )  cot-' 21, O < U < l .  (2.28) 

Equation (1.10) is a special case of this for U =;. 
The cross-over functions for other choices of f(x) in (2.1) are given in table 1. 

These results all follow from the tables of Laplace and Mellin transforms given by 
ErdClyi (1954). Additional examples can be found in this reference. 

2 -(l-u)/2 xu(z) = ryi -(T)(i -+z 

Table 1. Cross-over functions for various one-dimensional sums. 

Notation: J , ( x )  is the Bessel function of the first kind, Z v ( x )  is the Bessel function of purely 
imaginary argument and ,Fl(a, 6; c ; z )  denotes the hypergeometric function. 

Two points remain for discussion. Firstly, we should check that in the limit z + CO, 

corresponding to k + 0 at fixed positive p, X&) behaves in such a way as to cancel the 
apparent non-analyticity in (2.18) for small k. Secondly we shall briefly comment on 
the extension of these results to arbitrary real U, 

The behaviour of Xu(z)  for large z follows almost immediately from (2.19). We 
find that 

x&)= zU-laor(u- i ) + o ( ~ ~ - ' ) ,  (2.29) 

which precisely cancels the k"-' behaviour apparent in (2.18), in accord with (2.9). 
The extension of the preceding results to values of (T outside the half-open interval 

(0, 11 is also fairly straightforward. For U S 0, (2.7), together with (2.19) and (2.26), 
immediately gives 

S,(k, p ) =  k-"-"'X,(P/k) (2.30) 
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with 

X, ( ) = (- 1)' d'X,+ I (2 )/ dz I ,  

where 1 is such that 

O < u + l S l .  

(2.31) 

(2.32) 

For U >  1, the situation is somewhat more difficult since we observe that in this case 
S,(O, 0) exists being given by 

W O ,  0 )  = l ( U l f ( 0 ) .  (2.33) 

This limit obviously cannot be recovered by a direct application of (2.8) to (2.19) or 
(2.26). Nevertheless, for U > 1, S,(p, k )  does possess a singular parr, which varies as 

Su,sing(k, k " - ' ~ u ( p / k )  k + O , p / k = O ( l )  (2.34) 

for non-integral U with X,(z)  given by 

and 1 such that 

o < u - 1 < 1 .  

(2.35) 

(2.36) 

One can show that (2.34) gives the lowest non-analytic term in the expansion of 
S,(k, p )  for small k ;  all terms of lower order being integral powers of k .  If U is a 
positive integer, say s, a similar analysis shows that 

~ ~ , ~ i ~ ~ ( k ,  p)=  0 ( k S - '  In k ) .  (2.36) 

We shall not, however, discuss the details of this case, except to note that if the Taylor 
coefficient of x' in (2.3) vanishes, then the singular part of S,(k,  p )  is of order k'. 

3. Higher-dimensional sums 

We turn now to the analysis of d-dimensional sums of the type (1.2) with d > 1. Since 
S , ( k , p )  again satisfies the recurrence relations (2.7) and (2.5) we can restrict the 
parameter U to a unit interval, which we take to be 

d - 1 < U S  d. (3.1) 
Furthermore, since the sum in (1.2) is over all lattice points, we can, without loss of 
generality, assume that f ( x )  is even. Defining 

y = G . P  (3.2) 
where f and P denote unit vectors in the direction of k and m respectively, we can 
then write (1.2) as 

~,(k, p)=  2 1 m-"f(rkm)exp(-pm)+f(O) 1 m-, exp(-pm). (3.3) 
m,v>O m,v=O 

The second sum in this expression is over a (d - 1)-dimensional sub-lattice of the 
whole lattice and thus converges for all p 2 0 if U satisfies (3.1). Consequently, to 
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investigate the asymptotic behaviour of S,(k, p )  for small k = \k\ and small p it 
suffices to consider 

(3.4) 

Proceeding, as earlier, we introduce the Mellin transform 
W 

M ( p ;  0, k, y ) =  I x"-'f(ykx)e-'" dx = k-'W (Pi P / k  Y ) ,  (3.5) 
0 

where 
W 

~ ( p ;  z ,  y ) =  I yp-'f(ry)e-'' dy. 
0 

Inverting (3.5) and substituting in (3.1) yields the integral representation 

with 

The contour in (3.7) is to be chosen such that 

1 > c  = R e p  > d -CT 30, (3.9) 
for which (3.5) and (3.8) converge. 

As before, the leading asymptotic behaviour of &(k, p )  for small k with P/k = 
0(1)  comes from the pole of the integrand of (3.7) closest to the strip (3.9). We shall 
show that 9 ( p ;  z )  has a pole at d -U. To do so we consider 

X , ( z ) =  lim ( p - d + a ) V ( p ; z ) ,  
p+d-u+ 

(3.10) 

where our notation anticipates the identification of the limit with the required cross- 
over function. Applying the Euler-Maclaurin expansion to the sum in (3.4) allows us 
to write 

W ( p ;  Y, z ) ,  (3.11) ddm m - P - c  J; mI>mo,y>O 
X&)= lim 2 ( p - d + a )  

p-d-a+ 

where mo is a fixed positive number. The difference between this integral and the 
original sum can be shown to vanish in the indicated limit. Introducing polar coor- 
dinates in the d-dimensional space about the direction 6 yields 

W 

x,(z)= lim &(p-d+(T) 
p+d-u+ 

(3.12) 

(3.13) 

where 
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Thus for p near d -U, 

(3.14) 

Equation (3.7) now immediately implies that varies for small k as 

&(k, p )  = k"-dXu(P/k)+o(k"-d)  (3.15) 

with the cross-over function X&) given by (3.12). This result is again only valid for 
d - 1 < U < d. If U = d ,  W ( p  ; z )  possesses a double pole at p = d -U = 0,  which implies 
that 

(3.16) 

This case is, however, rather more difficult to analyse but it can be done along the lines 
used by Barber and Opie (1977) in their discussion of a special case of (1.2). 

The extension of these results to (T outside the interval (3.1) is completely analo- 
gous to that given in the preceding section. The conclusion is very similar; namely that 
for arbitrary U, S,(k, p )  has a singular piece which for non-integral (T varies as 

k (P/ k 1 (3.17) 

&(k, p )  = O(ln k ) .  

as k + 0 with p / k  = O(1). 

4. Discussion 

In the preceding two sections, we analysed sums of the form 

S& p )  = 1' m-"f(k.  m )  exp(-pm) 
m 

in the limit p + 0, k + 0 with P / k  of order unity. These sums, for non-integral U, were 
found to possess a singular part, which varies in the limit of interest as 

So;sing(k P ) -  k"-dXu(P/k).  (4.2) 
Several aspects of these results are worth comment. 

Firstly, for p =0, we note that the leading asymptotic behaviour as k"-d is 
independent of both the lattice structure and the specific choice of the function f ( z ) .  
The cross-over function X&) is also lattice independent, but does depend upon f ( z )  
(recall (2.19) and (3.12)). This universality is wider than that discussed by Hall 
(1976b) and appears to be rather common to lattice sums. Of course, if U >  d, (4.2) 
does not give the leading behaviour of S,(k, p )  for small k .  In general, this will be 
analytic and not universal. 

It is possible to extend the analysis presented in this paper in several directions. 
One extension, which can be treated by the methods developed here, is to sums of the 
form 

(4.3) 

The analogue of (4.2) now becomes 

Tu,K;sing= k"-d Y ( P / k " )  (4.4) 
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with Y ( z )  given in terms of the Mellin transform of f(y) exp(-zy") evaluated at d - a. 
It would also be possible to handle functions f(z) which were non-analytic for small z .  

Finally, we briefly mention a possible application of these results. Sums of the 
form (4.1) with f ( x )  = cos x and d = 3 arise in the calculation of dispersion relations in 
inert gas solids (Opie, private communication). In this example, p arises from many- 
body effects which screen the simple pairwise additive forces. Since p is probably 
small, the results of this paper should be relevant to the calculation of dispersion 
relations for small k. The relevant cross-over function follows from (3.13) and (3.6). 
Reference to ErdClyi (1954, p 320) gives 

(4.5) w ( ~ - ( T ;  y, z ) =  r ( d - ( T ) ( Z 2 + y 2 ) ( a - d ) ' Z  cos[(d-a) tan-'(y/z)]. 

Hence the cross-over function is given by 
1 

cos[(d -a)  tan-'(y/z)], x a ( z ) = - K d r ( d - u ) {  dy(1-r 2 ( d - 3 ) / 2  (2 2 +Y 2 ) ( a - d ) / 2  

0 

(4.6) 
where Kd is given in (3.13). 

While this integral cannot be evaluated in closed form for arbitrary (T and d, it is 
possible to confirm the essential features of the cross-over. In particular, in the limit 
z + 0, corresponding to p + 0 at fixed small k, we obtain 

This result, together with (3.15), generalises the results of Barber and Opie (1977) to 
arbitrary d.  Similarly, one can easily check that for z + CO, the non-analytic k depen- 
dence in (3.15) is removed. 
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